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ABSTRACT

A variational expression, for the scattering matrix of a step discontinuity in a multimode coaxial trans-
mission line, is obtained and the result is used to analyze the transmission characteristics of a coaxial TEM
cell.

1. Introduction

A step discontinuity, in a coaxial transmission

line, of the type shown in Fig. la, may be analyzed by

replacing it with an equivalent shunt susceptance,
provided the transverse dimensions of the coaxial line
are small enough that at the operating frequency only

the TEM mode can propagate. However as the frequency

is increased higher order modes will start propagating,
in one or both sections of the line, and any analysis
must consider the excitation and the intercoupling of

these modes due to the prsence of the discontinuity.
A convenient method of analysis is to develop a

scattering matrix representation of a junction, with
(M + N + 2) ports, M and N being the number of propa-

gating higher order rodes in the left and the right
sections of the line. In this paper, a variational

formulation of the scattering matrix elements is
obtained. Numerical results for the transmission of

TEM mode to and from a coaxial TEM cell capable of

propagating TEM as well as TMO, mode are then given.

2. Formulation

Consider the geometry shown in Fig. la, and the

scattering matrix representation (Fig. lb) of the
junction, where the dimensions of the line are
assumed to be such that only the TEM mode can propa-

gate in the left hand side section (z: O) and two
modes, namely the TEM and the TMO ,, can propagate in

the right hand section (z2 O). Let the incident and

the reflected magnetic fields H~i and Hbi associated

with the propagating modes, with a time dependence of
exp(iut), be given by
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where Zp(a,b;p) represents the orthonormal function

for the magnetic field of a TM
Op

mode, with p = O

referring to the TEM mode, in a coaxial line, with
inner and outer conductors of radii a and b respec-

tively; Lo = w is the free space characteristic

impedance; (3
p,A

and fl are the propagation constants,
p,B

of the TMOD mode in regions A (z: O) and B (z ~ 0)

respectively, given by
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with Ap being the cut-off wave number corresponding to

TM
Op-mode.

We have chosen ai and bi such that aia~ and bib’;

give the incident and the reflected powers respec-

tively in the i th
port. Then the scattering matrix S

relates the coefficients ai and bi tht-o~gh

bi = ~ S. .a .
IsJ j’

i = 1,2,3
j=]

(2.3)

We let H
$A and ‘$B

to be the total magnetic fields

in regions A and B respectively and define the scat-

‘ered ‘ie’ds ‘~A and ‘~B as ‘“’lows’

H~A(Pjz)= HOA(P,Z) ‘H~l(P, z) (2.4a)

H~B(P,Z) = H$B(p,Z) -H~2(p,Z)-H~3(p,z) . (2.4b)
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Defining the transverse electric fields EPA, EPB, E~A,

and Es
PB

in a similar manner we can obtain H$A(P,Z) in

terms of E~A(p,O) as B

B
‘3

f
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EpA(p’, O)pidp’ ~ Z (r, ,r3; p)
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We identify the coefficient b, in Hs and b2 and b3@A

‘n ‘jB
through the relations (2. la)-(2. lc) and,

noting that the total transverse electric fields are

given by the sum of the scattered and the incident
fields in the corresponding regions, establish the

following relation valid for arbitrary values of a,,

a2
and a

3“

S,2al+ (1 +S22)a2+S23a3

= no{(l+S11)al+s12a2
‘s13a3}

(2.6a)

where

no= {Ln(r3/r, )/!tn(r4/r2)}”2 (2.6b)

In addition, if we denote ~p(p,O) and ;P(P,O) to be

the total transverse electric fields, in the plane
2=0, corresponding to the cases i) a, = a2 = 1,

a3
= O and ii) a, = (1- S33)/S,3, a2 = 0, a3 = 1

respectively, we can establish the following exact

relations from (2.5)
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The evaluation of the right hand side expressions in
(2.7) and (2.8) requires a knowledge of thequanti ties

~p and ~p, However these expressions can be shown to

be variational with respect to Ep and ~p. Because of

this variational nattire highly accurate results may be

obtained by using the approximations

EP(P,O) s c,/P (2.ga)

~

Ep(P,O) = C2/P (2.9b)

in which case the desired expressions can be evaluated
in closed form without any knowledge of the constants

c1
and C2. Using (2.6a), (2.6b), (2.7) and (2.8) and

the following two additional independent equations,

>’; ,: >’:

‘llsll‘s12s12 ‘S13S13 = ‘
;! ,$ ,:

‘11s13 + ‘12s23 +s,3s33= o

(2.10)

(2.11)

which follow from the svmmetrv and the unitarv oroDer-,,,
ty of S, we can uniquely determine the scattering
matrix which is given below:
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where no is given by (2.6b) and nl and XO , are given
?

by the following general relationships:

l/2
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Zp(rl, r3; p)dp /(i6p,A)
p=M+ 1

+ p~+, (~~~ Z~~2,r@p)dp)2/( i6p,B)} “ (2.13b)

The above relationships give the parameters of the
equivalent circuit (Fig. lc) when the number of pro-

pagating higher order modes in regions A and B is M
and N respectively. Since the functions ZD involve

only the Bessel functions of unit order the integrals

in the above expressions can be readily evaluated in

closed form. We note that, when r3 = r4, our expres-

sion for the discontinuity capacitance, as given by

cd = l/(z, xo, ohl), reduces to the known special resultl

where z , is the characteristic impedance of the left
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hand section of the coaxial line.

3. Numerical Results

Using the scattering matrix obtained in the pre-

vious section the transmission characteristics of a

coaxial TEM cell of the type shown in Fig. 2a were
analyzed with the aid of the equivalent network repre-
sentation shown in Fig. 2b where each discontinuity

is reDlaced by a 3-port junction and the cell is
characterized by two transmission 1 ines correspond-

ing to TEM and TMO, modes. The transmission coeffi-

cient of an empty cell is plotted in Fig. 3 with the

length of the cell as the parameter. The cell dimen-

sions are rl= 100 cm, r3=80 cm, and r3/r, = r4/r2=

2.3. We notice deep nulls in the neighborhood of
points where the parameter B,L/n is an integer,

besides the nulls at the cut-off points of TMO, and

‘“02
modes which are at 263 MHz and 32$J MHz respec-

tively. A Small dipole type source inside the cell

can be replaced by equivalent voltage sources across

the transmission lines. The results for the case

where the cell is excited with an internal source wil
be discussed at the time of the presentation.
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a) Coaxial TEM cell.Fig. 2,

b) Equivalent transmission line network

representation of the TEM cell.
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Step discontinuity in a coaxial trans-
mission line.
Scattering matrix representation of the
step discontinuity.
Equivalent circuit of the step
discontinuity.
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Fig. 3. Voltage transmission coefficient vs.
frequency characteristics of the coaxial
TEM cell.
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